Minimax Adaptive Estimation of Nonparametric Hidden Markov Models

نویسندگان

  • Yohann de Castro
  • Elisabeth Gassiat
  • Claire Lacour
چکیده

We consider stationary hidden Markov models with finite state space and nonparametric modeling of the emission distributions. It has remained unknown until very recently that such models are identifiable. In this paper, we propose a new penalized least-squares estimator for the emission distributions which is statistically optimal and practically tractable. We prove a non asymptotic oracle inequality for our nonparametric estimator of the emission distributions. A consequence is that this new estimator is rate minimax adaptive up to a logarithmic term. Our methodology is based on projections of the emission distributions onto nested subspaces of increasing complexity. The popular spectral estimators are unable to achieve the optimal rate but may be used as initial points in our procedure. Simulations are given that show the improvement obtained when applying the least-squares minimization consecutively to the spectral estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Mixed Estimation of Hidden Markov Models

In this paper, we present a framework for a mixed estimation scheme for hidden Markov models (HMM). A robust estimation scheme is first presented using the minimax method that minimizes a worst case cost for HMMs with bounded uncertainties. Then we present a mixed estimation scheme that minimizes a risk-neutral cost with a constraint on the worst-case cost. Some simulation results are also pres...

متن کامل

Nonparametric estimation of the stationary density and the transition density of a Markov chain

In this paper, we study first the problem of nonparametric estimation of the stationary density f of a discrete-time Markov chain (Xi). We consider a collection of projection estimators on finite dimensional linear spaces. We select an estimator among the collection by minimizing a penalized contrast. The same technique enables to estimate the density g of (Xi,Xi+1) and so to provide an adaptiv...

متن کامل

Estimation of Hidden Markov Models with Nonparametric Simulated Maximum Likelihood

We propose a nonparametric simulated maximum likelihood estimation (NPSMLE) with built-in nonlinear …ltering. By recursively approximating the unknown conditional densities, our method enables a maximum likelihood estimation of general dynamic models with latent variables— including time-inhomogeneous and non-stationary processes. We establish the asymptotic properties of the NPSMLEs for hidden...

متن کامل

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

ADAPTIVE ESTIMATION OF STATIONARY GAUSSIAN FIELDS BY NICOLAS VERZELEN1 INRA and SUPAGRO

We study the nonparametric covariance estimation of a stationary Gaussian field X observed on a regular lattice. In the time series setting, some procedures like AIC are proved to achieve optimal model selection among autoregressive models. However, there exists no such equivalent results of adaptivity in a spatial setting. By considering collections of Gaussian Markov random fields (GMRF) as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016